蛙
 PERRAN.....VOTTHAL
 Every Moment Matters

Perran-ar-worthal School Calculation Policy (updated Feb 2020)
(adapted from the White Rose Calculation Policy)

5	Regrouping to make 10, using ten frames and counters/cubes or using Numicon. $6+5$	Children to draw the ten frame and counters / cubes.	Children to develop an understanding of equality: $\begin{aligned} & 6+\square=11 \\ & 6+5=5+ \\ & 6+5=\square+4 \end{aligned}$
6	Adding 3 objects $4+7+6=17$ Put 4 and 6 together to make 10. Add on 7	Draw pictures to recombine groups to make 10:	Combine the 2 numbers that make 10 and then add on the remainder: $\begin{aligned} (4+7+6 & =10+7 \\ & =17 \end{aligned}$
7	TO + O using base 10. Continue to develop understanding of partitioning and place value.	Children to represent the base 10 E.g. lines for tens and dots/crosses for ones:	

8	TO + T0 using base 10. Continue to develop understanding of partitioning and place value: $36+25$	Children to represent the base 10 in a place value chart:	Looking for ways to make 10 Use rounding to approximate answers.
9	Use of place value counters to add HTO + TO, HTO + HTO etc. When there are 10 ones in the 1s column - we exchange for 1 ten, when there are 10 tens in the 10s column - we exchange for 1 hundred:	Children to represent the counters in a place value chart, circling when they make an exchange:	243 2 3 3 6 1 +368 611 11 9 9 7 7 0 + 1 3 0 0 9 3 5 1 1 2 1 2 Use rounding to approximate answers.

				$\begin{aligned} & 1 \\ & / 3 / 4 / 5 \end{aligned}$					Year 3 Stages 6/7/8 (Up to 3 digits)	Year 4 Stages 8/9 (Up to 4 digits)	Year 5 Stage 9 (Up to 6 digits and decimals)	Year 6 Stage 9 (Up to 7 digits and decimals)
Stages	Concrete								Pictorial		Abstract	
3	Physically taking away and removing objects from a whole (tens frames, Numicon, cubes etc)$4-3=1$								Children to draw the concrete resources they are using and cross out the correct amount. The bar model can also be used.			
4	Counting back (using number lines or number tracks) children start with 6 and count back 2.$6-2=4$								Children to represent what they see pictorially:		Children to represent the calculation on a number line or number track and show their jumps. Encourage children to use an empty number line.	
5	Finding the difference (using cubes, Numicon or Cuisenaire rods, other objects can also be used). Calculate the difference between 8 and 5 .								Children to draw the cubes/other concrete objects which they have used or use the bar model to illustrate what they need to calculate.		Find the difference between 8 and 5: 8-5 the difference is Children to explore why $9-6=8-5=7-4 \quad$ have the same difference	

6	Making 10 using ten frames. $14-5$	Children to present the ten frame pictorially and discuss what they did to make 10:	Children to show how they can make 10 by partitioning the subtraction: $\begin{aligned} & 14-4=10 \\ & 10-1=9 \end{aligned}$
7	Column method using base 10 . 48-7	Children to represent the base 10 pictorially:	Column method or children could count back 7. $48-7$ $\begin{array}{r} 48 \\ -\quad 7 \\ \hline 41 \end{array}$
8	Column method using base 10 and having to exchange. 41-26	Represent the base 10 pictorially, remembering to show the exchange:	Formal column method. Children must understand that when they have exchanged the 10 they still have 41 because $41=30+$ 11 Use rounding to approximate answers.

Multiplication Guidance: Children are always encouraged to think about what is the most efficient method for the calculation						
Stage						
EYFS Statutory Requirement s 2014						
EYFS 1						
EYFS	Pupils should be taught to: Early Learning Goal Children count reliably with numbers from one to 20, place them in order and say which number is one more or one less than a given number. Using quantities and objects, they add and subtract two single-digit numbers and count on or back to find the answer. They solve problems, including doubling, halving and sharing.					
		Doubling Songs and Objects			es to show how to mber: und 4 is 8 $\square \square \square$	
	Year 1 Stages 2/3	Year 2 Stages 3/4/5	Year 3 Stages 5/6/7 (Multiply a 2 digit number by a single digit)	Year 4 Stages 7/8 (Multiply a 3 digit number by a single digit)	Year 5 Stage 8 (Multiply 2 digit numbers by 2 and 3 digit numbers)	Year 6 Stage 8 (Multiply any 2 whole or decimal numbers together)

Stages	Concrete	Pictorial	Abstract
3	Repeated grouping/repeated addition $\begin{aligned} & 3 \times 4 \\ & 4+4+4 \end{aligned}$ There are 3 equal groups, with 4 in each group.	Children to represent the practical resources in a picture and use a bar model.	$\begin{aligned} & 3 \times 4=12 \\ & 4+4+4=12 \end{aligned}$
4	Number lines to show repeated groups: $3 \times 4=$ Cuisenaire rods can be used too.	Represent this pictorially alongside a number line E.g:	Abstract number line showing three jumps of four. $3 \times 4=12$
5	Use arrays to illustrate commutativity counters and other objects can also be used: $2 \times 5=5 \times 2$	Children to represent the arrays pictorially:	Children to be able to use an array to write a range of calculations E.g. $\begin{gathered} 10=2 \times 5 \\ 5 \times 2=10 \\ 2+2+2+2+2=10 \\ 10=5+5 \end{gathered}$

6	Partition to multiply using Numicon, base 10 or Cuisenaire rods. 4×15	Children to represent the concrete manipulatives pictorially:	Children to be encouraged to show the steps they have taken: $\begin{array}{r} 4 \times 15 \\ 10 \quad 5 \\ 10 \times 4=40 \\ 5 \times 4=20 \\ 40+20=60 \end{array}$
7	Formal column method with place value counters (base 10 can also be used) 3×23	Children to represent the counters pictorially:	Children to record what it is they are doing to show understand 3×23 $\begin{gathered} 3 \times 20=60 \\ 3 \times 3=9 \\ 60+9=69 \end{gathered}$ 203 $\begin{array}{r} 23 \\ \times \quad 3 \\ \hline 69 \\ \hline \end{array}$
8	Formal column method with place value counters. 6×23	Children to represent the counters/base 10, pictorially:	Formal written method: Use rounding to approximate answers.

Division Guidance: Children are always encouraged to think about what is the most efficient method for the calculation						
Stage						
EYFS Statutory Requirement s 2014						
EYFS 1	N/A					
$\begin{gathered} \text { EYFS } \\ 2 \end{gathered}$	Pupils should be taught to: Early Learning Goal Children count reliably with numbers from one to 20, place them in order and say which number is one more or one less than a given number. Using quantities and objects, they add and subtract two single-digit numbers and count on or back to find the answer. They solve problems, including doubling, halving and sharing.					
	Cutting a	in half:				
	$\begin{gathered} \text { Year } 1 \\ \text { Stages } 2 / 3 \end{gathered}$	$\begin{gathered} \text { Year } 2 \\ \text { Stages } 2 / 3 / 4 \end{gathered}$	Year 3 Stages 4/5/6 (Divide a 2 digit number by a single digit)	Year 4 Stages 6/7 (Divide a 3 digit number by a single digit)	Year 5 Stage $7 / 8$ (Use sort division to divide 4 and 5 digit numbers leaing remainders as decimals and fractions)	Year 6 Stage 8 -Use long division to divide whole and decimal numbers by a 2 digit number)

Stages

